212
Bioelectromagnetism
Islam, M., Vigani, G., and Mafei, M.E. (2020b). Te geomagnetic feld (GMF) modulates nutrient status
and lipid metabolism during Arabidopsis thaliana plant development. Plants (Basel) 9(12), 1729.
doi: 10.3390/plants9121729.
Jaeger, K.E., Pullen, N., Lamzin, S., Morris, R.J., and Wigge, P.A. (2013). Interlocking feedback loops
govern the dynamic behavior of the foral transition in Arabidopsis. Plant Cell 25(3), 820–833.
Jeong, A.R., Lee, S.S., Han, Y.J., Shin, A.Y., Baek, A., Ahn, T., et al. (2016). New constitutively active
phytochromes exhibit light-independent signaling activity. Plant Physiol 171(4), 2826–2840. doi:
10.1104/pp.16.00342.
Jin, Y., Guo, W., Hu, X.P., Liu, M.M., Xu, X., Hu, F.H., et al. (2019). Static magnetic feld regulates
Arabidopsis root growth via auxin signaling. Sci Rep 9. doi: 10.1038/s41598-019-50970-y.
Jones, A.R. (2016). Magnetic feld efects in proteins. Mol Phy 114(11), 1691–1702. doi: 10.1080/00268976.
2016.1149631.
Kattnig, D.R. (2017). Radical-pair-based magnetoreception amplifed by radical scavenging: Resilience
to spin relaxation. J Phys Chem B 121(44), 10215–10227. doi: 10.1021/acs.jpcb.7b07672.
Kattnig, D.R., and Hore, P.J. (2017). Te sensitivity of a radical pair compass magnetoreceptor can be
signifcantly amplifed by radical scavengers. Sci Rep 7. doi: 10.1038/s41598-017-09914-7.
Kattnig, D.R., Evans, E.W., Dejean, V., Dodson, C.A., Wallace, M.I., Mackenzie, S.R., et al. (2016a).
Chemical amplifcation of magnetic feld efects relevant to avian magnetoreception. Nat Chem
8(4), 384–391. doi: 10.1038/nchem.2447.
Kattnig, D.R., Solov’yov, I.A., and Hore, P.J. (2016b). Electron spin relaxation in cryptochrome-based
magnetoreception. Phys Chem Chem Phys 18(18), 12443–12456. doi: 10.1039/c5cp06731f.
Kempster, R.M., McCarthy, I.D., and Collin, S.P. (2012). Phylogenetic and ecological factors infuencing
the number and distribution of electroreceptors in elasmobranchs. J Fish Biol 80(5), 2055–2088.
doi: 10.1111/j.1095-8649.2011.03214.x.
Kim, Y.H., Kim, M.D., Choi, Y.I., Park, S.C., Yun, D.J., Noh, E.W., et al. (2011). Transgenic poplar express
ing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance. Plant Biotechnol J
9(3), 334–347.
Kornig, A., Winklhofer, M., Baumgartner, J., Gonzalez, T.P., Fratzl, P., and Faivre, D. (2014). Magnetite crystal
orientation in magnetosome chains. Adv Funct Mater 24(25), 3926–3932. doi: 10.1002/adfm.201303737.
Kuznetsov, O.A., Schwuchow, J., Sack, F.D., and Hasenstein, K.H. (1999). Curvature induced by amy
loplast magnetophoresis in protonemata of the moss Ceratodon purpureus. Plant Physiol 119(2),
645–650.
Lee, A.A., Lau, J.C.S., Hogben, H.J., Biskup, T., Kattnig, D.R., and Hore, P.J. (2014). Alternative radical
pairs for cryptochrome-based magnetoreception. J R Soc Interface 11(95), 20131063. doi: doi:10.1098/
rsif.2013.1063.
Letuta, A.S., and Berdinskii, V.L. (2015). Chemical Zeno efect-A new mechanism of spin catalysis in
radical triads. Dokl Phys Chem 463, 179–181. doi: 10.1134/s0012501615080059.
Maeda, K., Robinson, A.J., Henbest, K.B., Hogben, H.J., Biskup, T., Ahmad, M., et al. (2012). Magnetically
sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a mag
netoreceptor. Proc Natl Acad Sci U S A 109(13), 4774–4779.
Mafei, M.E. (2014). Magnetic feld efects on plant growth, development, and evolution. Front Plant Sci
5, 445. doi: 10.3389/fpls.2014.00445.
Massey, V. (1994). Activation of molecular oxygen by favins and favoproteins. J Biol Chem 269(36),
22459–22462.
Muller, P., and Ahmad, M. (2011). Light-activated cryptochrome reacts with molecular oxygen to form
a favin-superoxide radical pair consistent with magnetoreception. J Biol Chem 286(24), 21033–
21040. doi: 10.1074/jbc.M111.228940.
Narayana, R., Fliegmann, J., Paponov, I., and Mafei, M.E. (2018). Reduction of geomagnetic feld (GMF)
to near null magnetic feld (NNMF) afects Arabidopsis thaliana root mineral nutrition. Life Sci
Space Res 19, 43–50. doi: 10.1016/j.lssr.2018.08.005.